Минимизация логических функций Вычислительная техника

V.	<i>Y</i> .	00	01	11	10	ı
A3		00	01	11	10	l
	00				\odot	١
X_2	01		\cup			
X_1	10					
	11				\bigcirc	ľ

λ	5	0			1				
X_3	<i>X</i> ₄	00	01	11	10	00	01	11	10
	00								
$X_1 X_2$	01								
X_1	10			\odot				Θ	
	11							\mathcal{I}	

Минимизация

- упрощение формы записи
- при во предотивнения и при во прементов при во предотивнителя и при во предотивнителя и при во прементов премен

Минимальная нормальная форма

Нормальная форма логической функции, содержащая наименьшее число элементов

Минимальная ДНФ = МДНФ

Минимальная КНФ = МКНФ

Логическая функция может иметь несколько МДНФ или МКНФ одинаковой сложности

Непосредственных преобразований

Квайна и Мак-Класки

Карно-Вейча

МЕТОД НЕПОСРЕДСТВЕННЫХ ПРЕОБРАЗОВАНИЙ Минимизация логических функций

Метод непосредственных преобразований

Применение законов алгебры логики
Результат — **тупиковая** форма логической функции

Тупиковая форма

Логическое выражение, к слагаемым которого больше не могут быть применены операции склеивания

Для одной функции может существовать несколько тупиковых форм

Минимальная форма — тупиковая форма логической функции минимальной длины

Функции *а и b* называются **равносильными**, если при одинаковых входных данных они принимают одинаковые значения

 $a \equiv b$

ЗАКОНЫ ЛОГИКИ

1. Идемпотентность

$$a \& a \equiv a$$

$$a \lor a \equiv a$$

2. Коммутативность

$$a \& b \equiv b \& a$$
$$a \lor b \equiv b \lor a$$

3. Ассоциативность

$$a & (b & c) \equiv (a & b) & c$$

$$a \lor (b \lor c) \equiv (a \lor b) \lor c$$

4. Дистрибутивность

$$a & (b \lor c) \equiv (a & b) \lor (a & c)$$

$$a \lor (b \& c) \equiv (a \lor b) \& (a \lor c)$$

5. Закон двойного отрицания

$$\neg(\neg a) \equiv a$$

6. Законы поглощения

$$a & (a \lor b) \equiv a$$

 $a \lor (a & b) \equiv a$

7. Законы де Моргана

$$\neg(a \lor b) \equiv \neg a \& \neg b$$
$$\neg(a \& b) \equiv \neg a \lor \neg b$$

8. Закон исключённого третьего

$$\neg a \lor a \equiv 1$$

9. Закон противоречия

$$\neg a \& a \equiv 0$$

10. Свойства тавтологии и противоречия

$$1 & a \equiv a \qquad 1 \lor a \equiv 1$$

$$0 & a \equiv 0 \qquad 0 \lor a \equiv a$$

$$- 0 \equiv 1 \qquad - 1 \equiv 0$$

11. Законы склеивания

$$(a & b) \lor (a & -b) \equiv a$$
$$(a \lor b) & (a \lor -b) \equiv a$$

12. Законы поглощения

$$a \& (a \lor b) \equiv a$$

$$a \lor (a \& b) \equiv a$$

Минимизировать СДНФ

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor (A \cdot B \cdot C) \lor$$

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor$$
$$\lor (A \cdot B \cdot C) \equiv$$

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor$$
$$\lor (A \cdot B \cdot C) \equiv$$

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor$$
$$\lor (A \cdot B \cdot C) \equiv$$

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor$$
$$\lor (A \cdot B \cdot C) \equiv$$
$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor$$
$$\lor (A \cdot \neg B \cdot C) \lor (A \cdot B \cdot C)$$

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor \\ \lor (A \cdot B \cdot C) \equiv \\ (\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor \\ \lor (A \cdot \neg B \cdot C) \lor (A \cdot B \cdot C) \\ \equiv (\neg B \cdot C) \lor (A \cdot C) \equiv \\ \equiv C \cdot (A \lor \neg B)$$

\mathbf{A}	В	C	\mathbf{f}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A	В	C	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Проблема

Определить, какие элементарные конъюнкции / дизъюнкции надо склеивать

КАРТЫ ВЕЙЧА-КАРНО

Минимизация логических функций

Эдвард Вестбрук Вейч

1924 - 2013

Американский физик

1952
«Метод диаграмм для минимизации логических функций»

Американский физик

1953 Усовершенствовал метод Вейча

род. 1924

Карта Карно

Графическое представление таблицы истинности логических функций

Таблица, содержащая по 2^n прямоугольных ячеек,

где n — число логических переменных

Код Грея

пристема счисления, в которой два соседних значения различаются только в одном разряде

X_1	$\mathbf{X_2}$	\mathbf{F}
0	0	1
0	1	0
1	0	1
1	1	1

		$\mathbf{X_2}$		
		0	1	
•	0	1	0	
X_1	1	1	1	

A	В	C	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

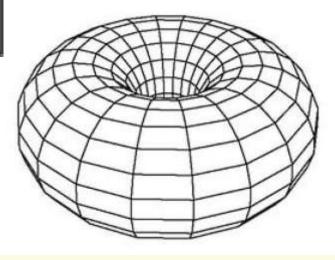
	В	0	0	1	1
	C	0	1	1	0
\mathbf{A}	0	0	1	0	0
	1	0	1	1	0

	ВС	00	01	11	10
	0	0	1	0	0
A	1	0	1	1	0

A B C D F 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1						
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	\mathbf{A}	В	C	D	F
0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 <td< th=""><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>	•	0	0	0	0	0
0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0	•	0	0	0	1	1
0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0	•	0	0	1	0	0
0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0	•	0	0	1	1	0
0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0	•	0	1	0	0	0
0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0	9	0	1	0	1	0
1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0	•	0	1	1	0	1
1 0 0 1 0 1 0 1 0 0 1 0 1 1 0		0	1	1	1	0
1 0 1 0 0 1 0 1 1 0		1	0	0	0	0
1 0 1 1 0		1	0	0	1	0
	→	1	0	1	0	0
1 1 0 0 1	.	1	0	1	1	0
	9	1	1	0	0	1
1 1 0 1 0	9	1	1	0	1	0
1 1 1 0 0	٠	1	1	1	0	0
1 1 1 1 0	•	1	1	1	1	0

		0	0	1	1	A
		0	1	1	0	В
0	0	0	0	1	0	
0	1	1	0	0	0	
1	1	0	0	0	0	
1	0	0	1	0	0	
С	D					

		AB				
		00	01	11	10	
	00	0	0	1	0	
CD	01	1	0	0	0	
	11	0	0	0	0	
	10	0	1	0	0	

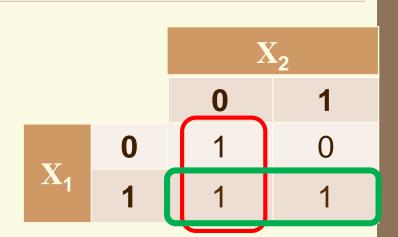

I	\mathbf{E}	0						1	
A	В	00	01	11	10	10	11	01	00
	00	0	0	1	0	0	1	0	1
CD	01	1	0	0	0	0	0	0	0
	11	0	0	0	0	0	0	0	1
	10	0	1	0	0	1	0	0	0

ДНФ КНФ

- 1. Объединяем смежные клетки с единицами (нулями) в максимально возможные области, содержащие 2^n клеток
- 2. В области **НЕ** должно находиться клеток, содержащих **нули** (**единицы**)
- 3. Области могут пересекаться
- 4. Возможно несколько вариантов покрытия

5. Крайние строки и столбцы являются соселними межлу собой

X_2	X_2X_3		01	11	10		
X_1	1	\in	0	0	\bigcirc		
A1	0	(1)	0	0	(1)		
$\overline{}$							



6. Несмежные области, расположенные симметрично оси(ей), могут

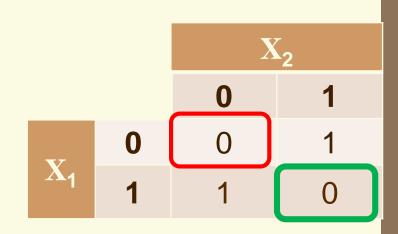
		ІЯТЬСЯ В ОДНУ 0					ı		
A	В	00	01	11	10	10	11	01	00
	00	0	1	1	0	0	1	1	1
CD	01	1	0	0	0	0	0	0	0
	11	0	0	0	0	0	0	0	1
	10	0	1	0	0	1	0	0	0

- 7. Для каждой области записываем конъюнкцию (дизъюнкцию) переменных, не изменяющих своё значение Если неизменная переменная равна нулю (единице) инвертируем
- **8.Конъюнкции (дизъюнкции)** областей объединяем **дизъюнкцией (конъюнкцией)**.

X_1	X_2	\mathbf{F}
0	0	1
0	1	0
1	0	1
1	1	1

$$F = \neg X_2 \lor X_1$$

Пример – МДНФ


X_1	$\mathbf{X_2}$	\mathbf{F}
0	0	0
0	1	1
1	0	1
1	1	0

		$\mathbf{X_2}$			
		0	1		
▼ Z	0	0	1		
X_1	1	1	0		

$$F = X_1 \cdot \neg X_2 \vee \neg X_1 \cdot X_2$$

Пример – МКНФ

X_1	X_2	\mathbf{F}
0	0	0
0	1	1
1	0	1
1	1	0

$$F = (X_1 \lor X_2) \cdot (\neg X_1 \lor \neg X_2)$$

$$X_2$$

A	В	C	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Формула

$$(\neg A \cdot \neg B \cdot C) \lor (A \cdot \neg B \cdot C) \lor (A \cdot B \cdot C) \lor (A \cdot B \cdot C)$$

Совершенная дизъюнктивная нормальная форма (СДНФ)

 $(A \vee B \vee C) \cdot$

 $\cdot (A \lor \neg B \lor C) \cdot$

 $\cdot (A \lor \neg B \lor \neg C) \cdot$

 \cdot ($\neg A \lor B \lor C$) \cdot

 $\cdot (\neg A \lor \neg B \lor C)$

Совершенная конъюнктивная нормальная форма (СКНФ)

_	В	0	0	1	1
	C	0	1	1	0
	0	0	1	0	0
A	1	0	1	1	0

	В	0	0	1	1
	C	0	1	1	0
	0	0	1	0	0
A	1	0	1	1	0

$$\mathbf{F} = \neg \mathbf{B} \cdot \mathbf{C} \vee \mathbf{A} \cdot \mathbf{C}$$

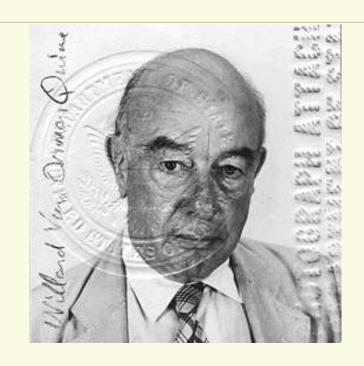
МДНФ

	В	0	0	1	1	
	C	0	1	1	0	
	0	0	1	0	0	
A	1	0	1	1	0	

$$F = \mathbf{C} \cdot (\mathbf{A} \vee \neg \mathbf{B})$$

МКНФ

A	В	C	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1


Недостатки

- Применим для функций до 7 переменных
- Выбор областей визуально
- Пет алгоритма, обеспечивающего оптимальное решение

МЕТОД КВАЙНА И МАК-КЛАСКИ

Минимизация логических функций

Виллард ван Орман Куайн

1908 - 2000

Американский философ, логик и математик

1993
премия Рольфа
Шока в области
логики и
философии

Эдвард Дж. Мак-Класки

1908 - 2000

Почётный профессор Стэнфордского университета.

Пионер в области электротехники

Первый алгоритм проектирования комбинационных схем

Метод Квайна и Мак-Класки

целесообразно, когда число входных переменных превышает 6 – 7